Maths

Calculation Policy

Addition-

Key language which should be used: sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears etc)		4+3=7 (four is a part, 3 is a part and the whole is seven)
Counting on using number lines by using cubes or numicon	A bar model which encourages the children to count on ?	The abstract number line: What is 2 more than 4 ? What is the sum of 4 and 4 ? What's the total of 4 and 2? $4+2$
Regrouping to make 10 by using ten frames and counters/cubes or using numicon: $6+5$	Children to draw the ten frame and counters/cubes	Children to develop an understanding of $\begin{aligned} & \text { equality e.g } 6+\square=11 \text { and } \\ & 6+5=5+\square 6+5=\square+4 \end{aligned}$

Use of place value counters to add HTO + TO, HTO + HTO etc. once the children have had practice with this, they should be able to apply it to larger numbers and the abstract

If the children are completing a word problem, draw a bar model to represent what it's asking them to do

Fluency variation, different ways to ask children to solve 21+34:

Sam saved $£ 21$ one week and $£ 34$ another. How much did he save in total?	21
21+34-55. Prove it! (reasoning but the children need to be fluent in representing this)	$21+34=$
	What's the sum of twenty one and thirty four?

Always use missing digit problems too:

Tens	Ones
$\odot \bigcirc$	\bigcirc
$\odot \bigcirc \bigcirc$	$?$
$?$	4

Subtraction-

Key language which should be used: take away, less than, the difference, subtract, minus, fewer, decrease, ' 7 take away 3, the difference is four'

Multiplication-

Key language which should be used: double times, multiplied by, the product of, groups of, lots of, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition (does not have to be restricted to cubes) 3×4 or 3 lots of 4	Children to represent the practical resources in a picture e.g. $\begin{array}{lll} x x & x x & x x \\ x x & x x & x x \end{array}$ Use of a bar model for a more structured method	$\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$
Use number lines to show repeated groups- 3×4	Represent this pictorially alongside a number line e.g:	Abstract number line $3 \times 4=12$
Use arrays to illustrate commutativity (counters and other objects can also be used) $2 \times 5=5 \times 2$	Children to draw the arrays	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 5+5=10 \end{aligned}$

Fluency variation, different ways to ask children to solve 6×23 :

						Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week?	Find the product of 6 and 23		What's the calculation? What's the	
23	23	23	23	23	23				(1) -	-
							6×23		(1)(1)	\bigcirc
			?						(1)	\bigcirc
						Tom saved 23p three			(1) ${ }^{(1)}$	00
With	he cour	,	s, p	ove	hat	days a week. How much			\bigcirc	00
6×2	$=13$					did he save in 2 weeks?	$\begin{array}{r}6 \\ \times \quad 23 \\ \hline\end{array}$		(1)	

Division-

Key language which should be used: share, group, divide, divided by, half, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract
6 shared between 2 (other concrete objects can also be used e.g. children and hoops, teddy bears, cakes and plates)	This can also be done in a bar so all 4 operations have a similar structure:	$6 \div 2=3$ What's the calculation?
Understand division as repeated grouping and subtracting $6 \div 2$		Abstract number line
2d $\div 1 \mathrm{~d}$ with remainders $13 \div 4$ - 3 remainder 1	Children to have chance to represent the resources they use in a pictorial way e.g. see below:	$13 \div 4-3$ remainder 1 Children to count their times tables facts in their heads

Use of Iollipop sticks to form wholes \square \square Use of Cuisenaire rods and rulers (using repeated subtraction)		
2d divided by 1d using base 10 (no remainders) SHARING $48 \div 4=12$ Start with the tens.	Children to represent the base 10 and sharing pictorially.	
Sharing using place value counters. 42 $\div 3=14$ 1. Make 42. Share the 4 tens between 3. Can we make an exchange with the extra 10? Exchange the ten for 10 ones and share out 12 ones		$\begin{aligned} & 42 \div 3 \\ & 42=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \\ & 10+4=14 \end{aligned}$

Long division

Concrete	Pictorial	Abstract
	Children to represent the counters, pictorially and record the subtractions beneath.	

